Workshops 3B & 4B: 5G - What’s the Big Deal? As 4G systems are being deployed worldwide, the communications community is preparing for the next leap in communications and is delving into intense debates on the potential roadmap to 5G communications. Novel 5G communication concepts are currently under discussion and this is a good time to start thinking about the essential features that should make their way into future 5G standards and system implementations, especially features that provide the “hooks” for novel mission critical communication applications and novel spectrum management schemes. The 5G workshop at SDR-WInnComm 2015 brings together people from different groups of the wireless community, including industry technologists, academicians, regulatory bodies, business managers, and standards bodies, as well as different market segments, including commercial, defense and public safety. The workshop provides an opportunity to showcase research work and position papers, and stimulate discussions on topics related to the technical, regulatory, and economic aspects of 5G communication systems. The focus will be on mechanisms that enable efficient spectrum utilization and mission critical communications. Session Agenda:Workshop 3B
Workshop 4B
A Heterogeneous Cellular Communication System for Moving Users: A 5G Prospective
Sanjay Kumar Biswash, Santosh V Nagaraj and Mahasweta Sarkar (San Diego State University, USA)
The Fifth Generation Communication (5G) system is has the several unique feature like: Massive MIMO, Device Centric Communication, Smarter Device-to-Smarter Deice, Native support for Machine-to-Machine Communication and Millimeter wave communication. The expected target for 5G network to achieve the 1000 times more system capacity, 10 times higher spectral efficiency, 100 time more energy efficiency than current network technologies, high data rate (i.e., peak data rate of 10 Gb/s for low mobility and peak data rate of 1 Gb/s for high mobility), and 25 times more average cell throughput with peak consideration of the cost and reliability of the system. The users mobility leads to the handover of device in the neighbor area, it cause the poor connection reliability and high communication cost with risk of connection loss. To address these challenges we are proposing a base station centric Device-to-device communication system, for overlapping area in 5G networks. The multiple signals from Base Station refers to overlapping coverage area, and user must be handover to next location area. For the same we are suggesting the user centric communication (without Base Station interface) to handover the device in adjacent area, until the users finalize the communication. The suggested method will reduce the signaling cost and overheads for the communication.
A Survey of Millimeter Wave RF Design Approaches For 5G Cellular Communications
Vivekanandh Elangovan (Virginia Polytechnic Institute and State University, USA); Dinesh Datla (Harris Corporation, USA); Jeffrey Reed (Virginia Tech, USA)
Industry and academia have started discussions on 5G cellular communications which is being projected as the next generation of cellular communications. Millimeter wave communication technology is a strong potential candidate for 5G communications given the vast attention that it has received by industry and academic research, and given the vast potential for expanded spectrum spaces. Millimeter wave system design, although viewed as novel in the cellular world, has been commonly used in satellite communications, radar, commercial and biomedical applications. Meteorological satellites, such as the MTSAT, operate in ka band (uplink of 27 – 31 GHz). Popular commercial applications include body scanners used by airport security which operates in mm wave frequencies. Airplane navigation support radars operate in the 31 – 36 GHz band. Broadly speaking, the literature discusses the application of heterodyne, superheterodyne, and direct conversion architectures for millimeter wave RF front end design. This paper has three objectives: (a) to survey existing approaches for millimeter wave RF design with focus on system level design aspects of RF signal reception and transmission; (b) evaluate their suitability for 5G communications; and (c) discuss the drawbacks of employing existing cellular RF design approaches for 5G millimeter wave communications. In 5G cellular communications, the RF design is expected to be power efficient and robust (low phase noise), and there is relatively less emphasis on spectral efficiency.
Effect of Imperfect Channel Estimation on Spectrum Sharing Between the Massive MIMO System and MIMO Radar
Ture Peken and Mohammed Hirzallah (University of Arizona, USA)
Massive MIMO have been introduced to improve the spectral efficiency. With massive MIMO, the systems having a much larger number of antennas per site than today are considered. Massive MIMO has several benefits which makes this technology an active research area for next generation wireless systems such as 5G. Perfect channel estimation becomes a big challenge since the maximum number of orthogonal training sequences for channel estimation are upper bounded by either the channel coherence time or the interference from the users in neighboring cells. This paper presents the problem of spectrum sharing between a communication system with a massive MIMO capability and MIMO radar. If the interference channels are assumed to be perfectly estimated by the communication users and fed back to the radar without an error, the interference at the communication receivers can be eliminated. We study how the results would change in spectrum sharing between the massive MIMO system and MIMO radar when the interference channels are estimated with linear squares (LS) and linear minimum mean squared error (LMMSE) channel estimation techniques. According to our simulation results, we get worse performance with LMMSE but nearly same performance with LS compared with using the perfect channel. Therefore, we can eliminate interference from MIMO radar even if the channel is not perfectly estimated.
5G Panel Klaus Doppler, Nokia Research |